
WatchDog
Using Scala for end-to-end functional testing

@klprose @pagerduty

15-06-04

What is PagerDuty?

WatchDog: Using Scala for end-to-end functional testing

Reliability at PagerDuty

•  We have to be up when your infrastructure
is not

•  Our customers trust us to reliably deliver
alerts

•  We ❤ reliability
•  We use a multi-DC SOA so that even a DC

outage does not stop alert delivery

15-06-04

Reliability at PagerDuty

•  Q3 2014: Two silent SEV-1s
•  Exposed gaps in our testing

and deployment procedures
•  Code Freeze until fixed

15-06-04

Improving Reliability

•  Solution: Write an end to end functional test suite
•  Behave like a customer

–  a really diligent customer that uses lots of PD functionality
–  and uses it really, really often

•  Shout from the rooftops if PD doesn’t work as
expected

•  Basically: Run tests against PD and alert on
failures

•  Important:
–  Test the entire system working together
–  Production is the gold standard

15-06-04

15-06-04

Aside: PagerDuty’s Data Model

Events

Service

Incident

Escalation
Policy

Ops Team 0 mins

Manager 5 mins

CEO 9 mins

Schedule

Ops Team
S M T W T F S
31 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 1 2 3 4

Joe
Frank
Dave
Joe
Frank

Joe
•  At 0 mins, e-mail me at ...
•  At 0 mins, SMS me at …
•  At 2 mins, phone me at …

Users and
Notification Rules

Account

First Attempt at a Test

15-06-04

"Sending an event" should "create an incident" {
 // 1. Provision an account... somehow
 val account = ???

 // 2. Make a bunch of resources on the account
 val user = account.mkUser
 val schedule = account.mkSchedule
 schedule.add(user)
 val escalationPolicy = account.mkEscalationPolicy
 escalationPolicy.addEscalationRule(EscalationRule(schedule))
 val service = account.mkService(ServiceType.Generic, escalationPolicy)

 // 3. Create a generic event
 val eventDescription = "Server on Fire"
 val triggerEvent = GenericEvent(
 serviceKey = service.key,
 description = eventDescription,
 eventType = "trigger");

 // 4. Send the event to PagerDuty
 triggerEvent.send

 // 5. Wait for an incident
 val incident = waitForIncidentToBeCreated // somehow?

 // 6. Validate properties of the incident
 incident.state shouldBe "trigger"
 incident.description shouldBe eventDescription
}

Yes how should accounts
be provisioned?

This is very
boilerplatey

Potentially
huge API

Yes, how should a test
specify which incident it’s
waiting for?
Is waiting synchronous?

Observations and
Considerations
•  We’re using ScalaTest
•  Synchronous polling is OK
•  This is against prod; be mindful of load

15-06-04

Dealing with Issues

1.  Account provisioning
2.  Setting up account entities (e.g., services,

EPs)
3.  Waiting for occurrences (e.g., a new

triggered incident)

15-06-04

Account Provisioning

15-06-04

•  Started with

"Sending an event" should "create an incident" {  
 // 1. Provision an account... somehow  
 val account: Account = ???

•  Responsibility of creating an account is on
test author.

•  Use loan-fixture method instead [1]

trait Account { def subdomain: String; def authToken: String }  
def withAccount[R](test: Account => R) = ???  
 
"Sending an event" should "create an incident" in withAccount {
 account: Account =>
 // do stuff with account...
}

[1] - http://scalatest.org/user_guide/sharing_fixtures#loanFixtureMethods

Account Provisioning

15-06-04

ScalaTest docs:

“A loan-fixture method takes a function whose body forms
part or all of a test's code. It creates a fixture, passes it to
the test code by invoking the function, then cleans up the
fixture after the function returns.”

Let’s see it in action

15-06-04

trait AccountManager {
 def acquireAccounts(num: Int): Set[Account]
 def releaseAccounts(accounts: Set[Account])
}

// The loan fixture: mix this in to your tests
trait AccountAcquiring {
 def withAccount[R](test: Account => R)
 (implicit accountManager: AccountManager): R =
 runTestsAndReleaseAccounts(1, accountManager,
 { accounts: Set[Account] => test(accounts.head) })

 def withAccounts[R](num: Int)(test: Set[Account] => R)
 (implicit accountManager: AccountManager): R =
 runTestsAndReleaseAccounts(num, accountManager,
 { accounts: Set[Account] => test(accounts) })

 private def runTestsAndReleaseAccounts[TestResult]
 (numAccounts: Int,
 accountManager: AccountManager,
 test: Set[Account] => TestResult): TestResult = {

 val accounts = accountManager.acquireAccounts(numAccounts)

 try {
 test(accounts)
 }
 finally {
 accountManager.releaseAccounts(accounts)
 }
 }
}

Account Provisioning: Load
Considerations
We can either:

1.  Create new accounts each time
2.  Re-use accounts from a pool

100s of tests each run every 5 minutes
=> 28K+ accounts created per day

15-06-04

Dealing with Issues

1.  Account provisioning
2.  Setting up account entities (e.g., services,

EPs)
3.  Waiting for occurrences (e.g., a new

triggered incident)

15-06-04

Setting up Account Entities
•  We started with:

 // 2. Make a bunch of resources on the account
 val user = account.mkUser
 val schedule = account.mkSchedule
 schedule.add(user)
 val escalationPolicy = account.mkEscalationPolicy
 escalationPolicy.addEscalationRule(EscalationRule(schedule))
 val service = account.mkService(ServiceType.Generic, escalationPolicy)

•  Lots of boilerplate.
•  As a test author, would be nice to specify

only what I need.

15-06-04

Setting up Account Entities

•  Use the builder pattern to encapsulate
setting defaults

15-06-04

"Sending an event" should "create an incident" in withAccount {
 account: Account =>

 val b: ServiceBuilder = new ServiceBuilder
 val service: Service = b.createOn account
}

Setting up Account Entities

•  Builders are chainable

15-06-04

"Sending an event" should "create an incident" in withAccount {
 account: Account =>

 val b: ServiceBuilder = (new ServiceBuilder).
 autoResolveTimeout(45.minutes)
 acknowledgementTimeout(15.minutes)
 val service: Service = b.createOn account
}

Setting up Account Entities

•  Refactor a singleton for nicer tests
•  Could have mixed in a trait

15-06-04

// Builder.scala
object Builder { def builder = new BuilderPicker }
sealed class BuilderPicker {
 def service(serviceType: Service.Type) = new ServiceBuilder(serviceType)
}

// In test
import Builder.builder
"Sending an event" should "create an incident" in withAccount {
 account: Account =>

 val service: Service = builder.service(Service.Generic).
 autoResolveTimeout(45.minutes)
 acknowledgementTimeout(15.minutes)
 createOn(account)
}

Setting up Account Entities

•  Setting other PagerDuty entities (e.g., an
escalation policy)

15-06-04

// Builder.scala
object Builder { def builder = new BuilderPicker }
sealed class BuilderPicker {
 def service(serviceType: Service.Type) = new ServiceBuilder(serviceType)
 def escalationPolicy = new EscalationPolicyBuilder
}

// In test
"Sending an event" should "create an incident" in withAccount {
 account: Account =>

 val ep: EscalationPolicy = builder.escalationPolicy.createOn(account)

 val service: Service = builder.service(Service.Generic).
 autoResolveTimeout(45.minutes)
 escalationPolicy(ep)
 createOn(account)
}

Setting up Account Entities

•  Recursively and lazily create all entities
with createOn

15-06-04

// Builder.scala
object Builder { def builder = new BuilderPicker }
sealed class BuilderPicker {
 def service(serviceType: Service.Type) = new ServiceBuilder(serviceType)
 def escalationPolicy = new EscalationPolicyBuilder
}

// In test
"Sending an event" should "create an incident" in withAccount {
 account: Account =>

 val epBuilder: EscalationPolicyBuilder = builder.escalationPolicy

 val service: Service = builder.
 service(Service.Generic).
 escalationPolicy(epBuilder). // Override for EscalationPolicyBuilder  
 createOn(account)
}

Setting up Account Entities

•  Tests are short again! Now we're cooking!
–  Anything a user omits, we assume defaults for

•  The builder is a description of the entity.
–  createOn reifies the entity and all of its

dependent resources

15-06-04

val service: Service = builder.
 service(Service.Generic).
 escalationPolicy(epBuilder).  
 createOn(account)

trait ResourceBuilder[T <: Resource] {
 def createOn(account: Account)(implicit subdomainClient: SubdomainAPI): T
}

case class ServiceBuilder(
 serviceType: Service.Type,
 escalationPolicyBuilder: Option[ResourceBuilder[EscalationPolicy]] = None,
 acknowledgementTimeout: Option[Duration] = None,
 autoResolveTimeout: Option[Duration] = None) extends ResourceBuilder[Service] {

 protected type This = ServiceBuilder

 def autoResolveTimeout(timeout: Duration): This =
 copy(autoResolveTimeout = Some(timeout))

 def acknowledgementTimeout(timeout: Duration): This =
 copy(acknowledgementTimeout = Some(timeout))

 def escalationPolicy(epBuilder: ResourceBuilder[EscalationPolicy]): This =
 copy(escalationPolicyBuilder = Some(epBuilder))

 def escalationPolicy(ep: EscalationPolicy): This =
 copy(escalationPolicyBuilder = Some(ConstantResourceBuilder(ep)))

 override protected def createOn(account: Account)
 (implicit subdomainClient: SubdomainAPI) = ??? // we'll get to this
}

Setting up Account Entities

15-06-04

Setting up Account Entities:
Load Considerations
As with account provisioning, with entities we
can either:

1.  Create new entities each test run
2.  (Somehow) re-use previously created entities

100s of tests each run every 5 minutes
=> 28K+ services, escalation policies, users,
created per day

15-06-04

Reusing Account Entities

•  PagerDuty's API allows querying for entities
with a given name. e.g.,
GET https://<account>.pagerduty.com/api/v1/services?
query=Database

•  Returns all services with "Database" in their
name (service.name like "%Database%")

•  This is lookup! We can build a cache on
this! What should the key be?

•  Use the hashCode of the builder

15-06-04

Reusing Account Entities
val b: ServiceBuilder = builder.service(Service.Generic).
 autoResolveTimeout(45.minutes).
 acknowledgementTimeout(15.minutes)

Equivalent to  

val b = ServiceBuilder(
 serviceType = Service.Generic,
 escalationPolicyBuilder = None,
 acknowledgementTimeout = 15.minutes,
 autoResolveTimeout: 45.minutes)

Builders are case classes.
Default hashCode implementation recursively
accounts for hashCode of all members

b.hashCode == 74398412

15-06-04

Reusing Account Entities

15-06-04

trait ResourceBuilder[T <: Resource] {
 // The caching version!
 def getOrCreateOnAsync(account: Account)
 (implicit subdomainClient: SubdomainAPI): Future[T] = {
 val moniker = s"[${hashCode.toString}]"
 val existingResource = findExisting(account, moniker)(subdomainClient)
 existingResource rescue {
 case _: NoMatchingResourcesException =>
 asyncCreateOn(account, Some(moniker))
 }
 }  

 // These methods overridden by builder subclass
 protected def asyncCreateOn
 (account: Account, requiredName: Option[String])
 (implicit subdomainClient: SubdomainAPI)
 : Future[T]

 def findExisting
 (account: Account, name: String)
 (implicit subdomainClient: SubdomainAPI): Future[T]
}

Reusing Account Entities:
Hashing Gotchas
•  Originally had

 val moniker = hashCode.toString
•  Now have

 val moniker = s"[${hashCode.toString}]”
•  Original has a subtle bug. See it?
•  Remember that LIKE query?
•  If b.hashCode == 743, we could get results with

743 in name (e.g., service.name == 984743103).
Whoops.

15-06-04

Dealing with Issues

1.  Account provisioning
2.  Setting up account entities (e.g., services,

EPs)
3.  Waiting for occurrences (e.g., a new

triggered incident)

15-06-04

Expecting Occurrences
•  We started with:

 // 4. Send the event to PagerDuty
 triggerEvent.send

 // 5. Wait for an incident
 val incident = waitForIncidentToBeCreated // somehow?

•  Synchronous short polling is sufficient

15-06-04

Expecting Occurrences
•  As a test author, I want to concisely and

declaratively specify the condition to wait
for

15-06-04

/* Wait for a single triggered incident on an account */
val occurrence = incident on account where {
 incident: Incident => incident.state == Incident.Triggered
}
val incident: Incident = waitFor(occurrence)

/* Simultaneously wait for two incidents on a service */
val occurrence1 = incident on service where {
 i: Incident => i.incidentNumber >= 5
}
val occurrence2 = incident on service where {
 i: Incident => i.incidentKey == "host0765"
}
val incident: Incident = waitFor(occurrence1 and occurrence2)

Expecting Occurrences
waitFor should transform to a short poll loop  

val incident: Incident = waitFor(occurrence)

Should become
val pollingFrequency: Duration = ???  
val maxTimeToWait: Duration = ???  
 
val deadline = maxTimeToWait.fromNow  
while (!occurrence.hasOccurred) {  
if (Time.now > deadline)  
 throw new TimeoutException(s”Did not complete within $maxTimeToWait")  
 Time.sleep(pollingFrequency)  
}  

Nice to control timing parameters for waitFor
val incident: Incident = waitFor(occurrence).
 within(15.seconds). // maxTimeToWait
 checkEvery(3.seconds) // pollingFrequency

15-06-04

Expecting Occurrences
Other syntactic niceties

15-06-04

val occurrence = incident.
 on(service).
 withIncidentKey("abcd").
 withState(Incident.Triggered)

Expecting Occurrences
•  How can we implement this DSL?

•  Two entities:
–  Occurrences
–  Expectations

•  Occurrences return entities
•  Expectations wait for occurrences
•  Performing conjunction between

occurrences is a little hairy

15-06-04

val occurrence = incident.on(account).withState(Incident.Triggered)
// Becomes while(!occurrence.hasOccurred)
val incident: Incident = waitFor(occurrence)

Expecting Occurrences

15-06-04

trait Occurrence {
 def hasOccurred: Boolean
}

trait Occurrence1[T] extends Occurrence {
 protected type Predicate = T => Boolean

 def apply(): T
 def and[T2](other: Occurrence1[T2]) =
 new Occurrence2[T, T2](this, other)
}

sealed class Occurrence2[T1, T2](occA: Occurrence1[T1], occB: Occurrence1[T2])
 extends Occurrence {
 def apply(): (T1, T2) = (occA.apply, occB.apply)
 def hasOccurred: Boolean = occA.hasOccurred && occB.hasOccurred
 def and[T3](other: Occurrence1[T3]) =
 new Occurrence3[T1, T2, T3](this, other)
}

// Analagous for Occurrence3[T1,T2,T3], Occurrence4[T1,T2,T3,T4]

Expecting Occurrences
•  How do occurrences compose?

15-06-04

val occurrenceA: Occurrence1[Incident] = incident.on(service).where { ... }
val occurrenceB: Occurrence1[Incident] = incident.on(service).where { ... }
val occurrenceC: Occurrence1[Incident] = incident.on(service).where { ... }  

val occurrence2: Occurrence2[Incident] = occurrenceA and occurrenceB
val occurrence3: Occurrence3[Incident] = occurrence2 and occurrenceC
// or
val occurrence3: Occurrence3[Incident] =
 occurrenceA and occurrenceB and occurrenceC

val incidents: (Incident, Incident, Incident) = occurrence3()

Expecting Occurrences

15-06-04

case class IncidentOccurrence(subdomainAPI: SubdomainAPI)  
 extends Occurrence1[Incident] {
 type This = IncidentOccurrence

 var _predicate: Option[Predicate] = None
 var _account: Option[Account] = None
 var _service: Option[Service] = None
 var _states: Seq[Incident.State] = Seq()
 var _incidentKey: Option[String] = None

 var _incident: Incident = null

 // regular builder pattern stuff
 def on(service: Service): This = ...
 def on(account: Account): This = ...
 def where(predicate: Predicate): This = ...
 def withState(state: Incident.State): This = ...
 def withStates(states: Seq[Incident.State]): This = ...
 def withIncidentKey(incidentKey: String): This = ...

Expecting Occurrences

15-06-04

 def hasOccurred: Boolean = {
 if (_account == None)
 throw new IllegalArgumentException(”account or service missing")

 val allIncidents = Await.result(subdomainAPI.incidents(/* Use instance vars */))
 val incidents =
 if (_predicate == None)
 allIncidents
 else
 allIncidents.filter(_predicate.get)

 if (!incidents.isEmpty)
 _incident = incidents.head

 !incidents.isEmpty
 }

 def apply: Incident = {
 _incident
 }
}

object IncidentOccurrence {
 def incident(implicit subdomainAPI: SubdomainAPI)  
 = new IncidentOccurrence(subdomainAPI)
}

Expecting Occurrences

15-06-04

abstract sealed class Expectation(
 timeout: Duration,
 pollingFrequency: Duration,
 delayTime: Duration)
{
 type This

 def hasOccurred: Boolean

 protected def poll[Result](result: => Result): Result = {
 val deadline = timeout.fromNow
 if (delayTime > 0.seconds) Time.sleep(delayTime)

 while (!hasOccurred) {
 if (util.Time.now > deadline)
 throw new TimeoutException(s"Did not complete within $timeout")

 Time.sleep(pollingFrequency)
 }

 result
 }
}

Expecting Occurrences

15-06-04

sealed case class Expectation1[T](
 occurrence: Occurrence1[T],
 timeout: Duration = Expectation.DefaultTimeout,
 pollingFrequency: Duration = Expectation.DefaultPollingFrequency,
 delayTime: Duration = Expectation.DefaultDelayTime)
 extends Expectation(timeout, pollingFrequency, delayTime)
{
 type This = Expectation1[T]
 // inherits poll from base class
 def awaitResult: T = poll(occurrence())
 override def hasOccurred: Boolean = occurrence.hasOccurred
}
// analogous definition for Expectation2[T1, T2], Expectation3[T1, T2, T3]
 

object Expect {
 def apply[T](occurrence: Occurrence1[T]) = new Expectation1[T](occurrence)
}  
 
// Usage
val occurrence = incident.on(service).withIncidentKey("abcd")
val incident: Incident = Expect(occurrence).awaitResult

Expecting Occurrences

15-06-04

val incident: Incident = Expect(occurrence).
 within(15.seconds). // maxTimeToWait
 checkEvery(3.seconds) // pollingFrequency

•  How to allow timing parameter control?

Expecting Occurrences

15-06-04

abstract sealed class Expectation(
 timeout: Duration,
 pollingFrequency: Duration,
 delayTime: Duration)
{
 ...

 // builder pattern again!
 def within(time: Duration): This =
 copyProtected(time, pollingFrequency, delayTime)
 def checkEvery(period: Duration): This =
 copyProtected(timeout, period, delayTime)
 def waitAtLeast(minTime: Duration): This =
 copyProtected(timeout, pollingFrequency, minTime)

 protected type CopyFunction = (Duration, Duration, Duration) => This
 protected val copyProtected: CopyFunction
}  
 
sealed case class Expectation1[T](...) {
 ...
 override protected val copyProtected: CopyFunction = copy(occurrence, _, _, _)
}

Dealing with Issues

1.  Account provisioning
2.  Setting up account entities (e.g., services,

EPs)
3.  Waiting for occurrences (e.g., a new

triggered incident)

15-06-04

WatchDog in Production

•  100+ tests running continuously in
production

•  Different rings of tests
–  shorter tests run every 5 minutes
–  longer tests run every 30 mins

15-06-04

Issues Found by WatchDog
•  Slow enqueuing of events (p99.9 > 20 seconds)

•  LBs throwing 502s due to TLS issues between LBs and event
enqueuer

•  500s due to a database node changeover and resizings

•  Breaking API change (notification rules when creating
contact method)

•  Load balancer change causing bg work to be processed by
only one worker

•  Countless other issues caught before code went live

15-06-04

What else have we learned?
•  Rare anomalies, exercised repeatedly, will fail (and

page)

•  Lots of expectations on client behaviour

•  Tension between false failures and timing tolerances

•  WatchDog tests the system
Unstable system => unstable tests

•  Majority of failures are transient system issues

•  Lots of tests => lots of load

15-06-04

Thank you.
pagerduty.com

